Search results for "Dual polyhedron"
showing 7 items of 7 documents
Frames and representing systems in Fréchet spaces and their duals
2014
[EN] Frames and Bessel sequences in Fr\'echet spaces and their duals are defined and studied. Their relation with Schauder frames and representing systems is analyzed. The abstract results presented here, when applied to concrete spaces of analytic functions, give many examples and consequences about sampling sets and Dirichlet series expansions.
Asplund Operators on Locally Convex Spaces
2000
We study the relationship between the local Radon-Nikodým property, introduced by Defant [4] as a generalization of the Radon-Nikodým property to duals of locally convex spaces, and the Asplund operators, introduced by Robertson [7]. We also give a characterization of Asplund symmetric tensor products of Banach spaces in terms of Asplund maps.
Almost square Banach spaces
2014
We single out and study a natural class of Banach spaces -- almost square Banach spaces. In an almost square space we can find, given a finite set $x_1,x_2,\ldots,x_N$ in the unit sphere, a unit vector $y$ such that $\|x_i-y\|$ is almost one. These spaces have duals that are octahedral and finite convex combinations of slices of the unit ball of an almost square space have diameter 2. We provide several examples and characterizations of almost square spaces. We prove that non-reflexive spaces which are M-ideals in their biduals are almost square. We show that every separable space containing a copy of $c_0$ can be renormed to be almost square. A local and a weak version of almost square spa…
Almost square dual Banach spaces
2020
Abstract We show that finite dimensional Banach spaces fail to be uniformly non locally almost square. Moreover, we construct an equivalent almost square bidual norm on l ∞ . As a consequence we get that every dual Banach space containing c 0 has an equivalent almost square dual norm. Finally we characterize separable real almost square spaces in terms of their position in their fourth duals.
The hidden group structure of quantum groups: strong duality, rigidity and preferred deformations
1994
A notion of well-behaved Hopf algebra is introduced; reflexivity (for strong duality) between Hopf algebras of Drinfeld-type and their duals, algebras of coefficients of compact semi-simple groups, is proved. A hidden classical group structure is clearly indicated for all generic models of quantum groups. Moyal-product-like deformations are naturally found for all FRT-models on coefficients andC∞-functions. Strong rigidity (H bi 2 ={0}) under deformations in the category of bialgebras is proved and consequences are deduced.
Shrinking and boundedly complete Schauder frames in Fréchet spaces
2014
We study Schauder frames in Fréchet spaces and their duals, as well as perturbation results. We define shrinking and boundedly complete Schauder frames on a locally convex space, study the duality of these two concepts and their relation with the reflexivity of the space. We characterize when an unconditional Schauder frame is shrinking or boundedly complete in terms of properties of the space. Several examples of concrete Schauder frames in function spaces are also presented.
Properties of some conformal field theories with M-theory duals
2007
24 pages.-- ISI Article Identifier: 000245078200049.-- ArXiv pre-print available at: http://arxiv.org/abs/hep-th/0611219